Why Microphone Self-Noise is Important to Recording

Self-noise in a microphone is important if the recordist is seeking to come as close as possible to making a clean, noise-free recording. But how does one read self-noise specs and what numbers are good and bad when making a decision on which microphone to use?

It’s a slippery question, since many microphone manufacturers — especially for low cost condensers — don’t even reveal self-noise specs. That is usually for a good reason. “It is not cheap to make a truly quiet microphone,” a manufacturer once said.

Also, some classic, high-end models from reputable manufacturers may have unique sounds and were great in their day, but by modern standards generate excessive self-noise. It is always important to read the self-noise specs before purchasing any microphone, regardless of cost.

Shure's KSM 141 noise level A-weighted is 14 dB.

Shure's KSM 141 noise level A-weighted is 14 dB.

Of course, no one wants a noisy recording, so some kind of evaluation must be made of mics before using them for recording. While a relatively noisy mic must be placed very close to the source to achieve an acceptable signal-to-noise ratio, a low noise mic offers the recordist much greater freedom of placement.

Low microphone noise is more than just a technicality. It is — in the words of premium microphone manufacturer, Neumann — your creative “elbow room.”

In a white paper on the subject, Neumann said for condenser microphones, noise is usually specified in terms of “equivalent noise level.” A more common term is “self-noise,” as this is the signal the microphone produces of itself, even when no sound source is present.

A sound proof chamber used to measure the self-noise of microphones.

A sound proof chamber used to measure the self-noise of microphones.

The proper way to measure self-noise is to put the entire microphone into a soundproof container. However, some manufacturers simply measure the microphone without the capsule. The latter method, we are told, offers better specs.

Usually, self-noise is given in dB-A. The “A” stands for A-weighting, which is a method to simulate human perception. For instance, humans are much less sensitive to noise in the low frequencies than to noise in the mid-band, where the human voice resides.

Reputable manufacturers give additional noise figures according to other (stricter) measurement standards, but most manufacturers will give A-weighted self-noise, which happens to be the measurement method that results in the lowest figures. If self-noise is not specified on a microphone, ask why.

Blue Microphone's Hummingbird has a noise level A-weighted of 8.5 dB-A.

Blue Microphone's Hummingbird has a noise level A-weighted of 8.5 dB-A.

Anything below 10 dB-A is extremely low noise, Neumann said. The exact figure is unimportant, as even a very quiet recording room will contribute quite a bit more ambient noise than 10 dB-A.

In the very good range, 11-15 dB-A, recordists may be able to discern some very slight noise in critical applications. But usually, such noise is impossible to hear in the context of the whole mix.

A range from 16-19 dB-A is good enough for most purposes. Some noise may be heard when recording relatively quiet instruments, but it’s usually unobtrusive.

When a mic’s self-noise reaches 20-23 dB-A, it’s pretty high — especially for a first rate studio-quality microphone. This is an area where every decibel counts, because we’ve reached a noise level that’s clearly audible. Such noise figures may be acceptable when recording loud sources, but not for anything below speaking level.

When self-noise climbs to 24 dB-A and above, the microphone is not worthy of being used for high quality recordings, said Neumann. This is the region where many bargain basement microphones reside.

It should be noted that self-noise is normally for condenser models and active ribbon microphones. It is rarely specified for dynamic microphones or passive ribbons. That’s because dynamics and passive ribbons have no internal electronics and their noise performance is largely dependent on the preamp being used. Those ribbons with active electronics requiring phantom power have self-noise.

As a rule of thumb, Neumann said, dynamic microphones using an ultra-low noise preamp reach self-noise figures of about 18 dB-A.

Another way to document the noise performance, Neumann added, is to specify the signal-to-noise ratio. But relative to what signal? The reference sound pressure level for noise measurements is 94 dB (which equals a sound pressure of 1 pascal).

So you can simply calculate:

Signal-to-noise (db-A) = 94 dB – self-noise (dB-A)

The actual signal-to-noise ratio in use, of course, depends on the sound pressure level of your sound source.

You might also like...

Designing IP Broadcast Systems

Designing IP Broadcast Systems is another massive body of research driven work - with over 27,000 words in 18 articles, in a free 84 page eBook. It provides extensive insight into the technology and engineering methodology required to create practical IP based broadcast…

NDI For Broadcast: Part 3 – Bridging The Gap

This third and for now, final part of our mini-series exploring NDI and its place in broadcast infrastructure moves on to a trio of tools released with NDI 5.0 which are all aimed at facilitating remote and collaborative workflows; NDI Audio,…

Designing An LED Wall Display For Virtual Production - Part 2

We conclude our discussion of how the LED wall is far more than just a backdrop for the actors on a virtual production stage - it must be calibrated to work in harmony with camera, tracking and lighting systems in…

Microphones: Part 2 - Design Principles

Successful microphones have been built working on a number of different principles. Those ideas will be looked at here.

Expanding Display Capabilities And The Quest For HDR & WCG

Broadcast image production is intrinsically linked to consumer displays and their capacity to reproduce High Dynamic Range and a Wide Color Gamut.