iSIZE BitClear Achieves AI-driven Live Video Denoising & Upscaling Up To 4K With Intel AMX

iSIZE, a specialist in deep learning for video delivery, has released first performance results taking full advantage of the special instructions enabled by Intel Advanced Matrix Extensions (Intel AMX), available on the 4th Gen Intel Xeon Scalable processor.

The new Intel architecture means that AI-based video processing like iSIZE BitClear can be performed entirely within the CPU, eliminating the latency, energy and cost overheads of linking to a GPU or other external accelerator.

The volume of video to be processed, delivered and stored continues to grow exponentially. From archive footage and consumer-generated content to surveillance and drone images, much of this material is of limited resolution and marred by noise and distortion. Emergen Research predicts the market for security and surveillance video to grow by 18.7% by 2030, and drone cameras to grow at 26% over the same period. It has been reported that 500 hours of video are uploaded to YouTube every minute. The quality of video from such contexts is often hampered by dirt or rain on external lenses, drone vibration, storage and upload limits and degradation in archive footage. Therefore, to get the best results requires very sophisticated processing. iSIZE BitClear uses unique deep learning techniques to dynamically restore the video to the best possible quality, without affecting the perceptual intent of the content creator. It also permits AI-based video upscaling, allowing devices of limited native resolution to contribute high-resolution streams.

Intel AMX allows the advanced BitClear processing to be handled entirely within 4th Gen Intel Xeon Scalable processors. Measurements with BitClear have shown that 4th Gen Intel Xeon Scalable processors with Intel AMX deliver up to twice the performance of 3rd Gen Intel Xeon Scalable processors. This allows for BitClear to achieve real-time performance for denoising up to 1080p and denoising with upscaling for up to 2160p resolution, respectively. This was previously impossible without a specialized GPU or other accelerator hardware.

You might also like...

Live Sports Production: Camera To Truck

Much of the OB production infrastructure has moved to IP, but has the connectivity between the cameras and the OB or backhaul also migrated to IP?

Live Sports Production: Exploring The Evolving OB

The first of our three articles is focused on comparing what technology is required in OBs and other venue systems to support the various approaches to live sports production.

Cloud Compute Infrastructure At IBC 2025

In celebration of the 2025 IBC Show, this article focuses on the key theme of cloud compute infrastructure and what exhibitors at the show are doing in this key area of technological enablement.

Navigating Streaming Networks For Live Sports

With the relentless rise of consumers moving from OTA to live streaming of big-ticket sports, this series shares insight into what happens after content leaves production during a live stream. It is a subject broadcasters cannot afford to regard as…

Mobile Broadcasting Opportunities

Broadcasters have been catering for mobile viewing in various ways for many years but are now entering a new era as devices become more capable, with increasing scope for interactivity and greater immersiveness through Extended Reality (XR). But with connected…