iSIZE BitClear Achieves AI-driven Live Video Denoising & Upscaling Up To 4K With Intel AMX

iSIZE, a specialist in deep learning for video delivery, has released first performance results taking full advantage of the special instructions enabled by Intel Advanced Matrix Extensions (Intel AMX), available on the 4th Gen Intel Xeon Scalable processor.

The new Intel architecture means that AI-based video processing like iSIZE BitClear can be performed entirely within the CPU, eliminating the latency, energy and cost overheads of linking to a GPU or other external accelerator.

The volume of video to be processed, delivered and stored continues to grow exponentially. From archive footage and consumer-generated content to surveillance and drone images, much of this material is of limited resolution and marred by noise and distortion. Emergen Research predicts the market for security and surveillance video to grow by 18.7% by 2030, and drone cameras to grow at 26% over the same period. It has been reported that 500 hours of video are uploaded to YouTube every minute. The quality of video from such contexts is often hampered by dirt or rain on external lenses, drone vibration, storage and upload limits and degradation in archive footage. Therefore, to get the best results requires very sophisticated processing. iSIZE BitClear uses unique deep learning techniques to dynamically restore the video to the best possible quality, without affecting the perceptual intent of the content creator. It also permits AI-based video upscaling, allowing devices of limited native resolution to contribute high-resolution streams.

Intel AMX allows the advanced BitClear processing to be handled entirely within 4th Gen Intel Xeon Scalable processors. Measurements with BitClear have shown that 4th Gen Intel Xeon Scalable processors with Intel AMX deliver up to twice the performance of 3rd Gen Intel Xeon Scalable processors. This allows for BitClear to achieve real-time performance for denoising up to 1080p and denoising with upscaling for up to 2160p resolution, respectively. This was previously impossible without a specialized GPU or other accelerator hardware.

You might also like...

Monitoring & Compliance In Broadcast: Monitoring Cloud Infrastructure

If we take cloud infrastructures to their extreme, that is, their physical locality is unknown to us, then monitoring them becomes a whole new ball game, especially as dispersed teams use them for production.

Neutral TV Operating Systems

TV OSs have become pivotal to both smart TVs and streaming services as consumers continue to cut the cord. There is growing interest not just among TV makers but also major streaming and advertising platforms in neutral TV OSs independent…

Sweden’s Accelerating Journey From DTT To OTT

2025 may be a watershed year for the broadcast delivery switchover from DTT (Digital Terrestrial Television) to IP (Internet Protocol). We know that an increasing number of viewers of broadcaster content are turning to their favorite streaming apps to watch the…

Microphones: Part 9 - The Science Of Stereo Capture & Reproduction

Here we look at the science of using a matched pair of microphones positioned as a coincident pair to capture stereo sound images.

Monitoring & Compliance In Broadcast: Monitoring Cloud Networks

Networks, by their very definition are dispersed. But some are more dispersed than others, especially when we look at the challenges multi-site and remote teams face.