iSIZE BitClear Achieves AI-driven Live Video Denoising & Upscaling Up To 4K With Intel AMX

iSIZE, a specialist in deep learning for video delivery, has released first performance results taking full advantage of the special instructions enabled by Intel Advanced Matrix Extensions (Intel AMX), available on the 4th Gen Intel Xeon Scalable processor.

The new Intel architecture means that AI-based video processing like iSIZE BitClear can be performed entirely within the CPU, eliminating the latency, energy and cost overheads of linking to a GPU or other external accelerator.

The volume of video to be processed, delivered and stored continues to grow exponentially. From archive footage and consumer-generated content to surveillance and drone images, much of this material is of limited resolution and marred by noise and distortion. Emergen Research predicts the market for security and surveillance video to grow by 18.7% by 2030, and drone cameras to grow at 26% over the same period. It has been reported that 500 hours of video are uploaded to YouTube every minute. The quality of video from such contexts is often hampered by dirt or rain on external lenses, drone vibration, storage and upload limits and degradation in archive footage. Therefore, to get the best results requires very sophisticated processing. iSIZE BitClear uses unique deep learning techniques to dynamically restore the video to the best possible quality, without affecting the perceptual intent of the content creator. It also permits AI-based video upscaling, allowing devices of limited native resolution to contribute high-resolution streams.

Intel AMX allows the advanced BitClear processing to be handled entirely within 4th Gen Intel Xeon Scalable processors. Measurements with BitClear have shown that 4th Gen Intel Xeon Scalable processors with Intel AMX deliver up to twice the performance of 3rd Gen Intel Xeon Scalable processors. This allows for BitClear to achieve real-time performance for denoising up to 1080p and denoising with upscaling for up to 2160p resolution, respectively. This was previously impossible without a specialized GPU or other accelerator hardware.

You might also like...

The Interactive Rights Technology Ecosystem: Part 2

As we continue our dive into the new frontier of Interactive Rights we delve deeper into the Interactive Rights technology ecosystem with an exploration of the required functionality and the components required to deliver it.

5G Broadcast Update 2025

After some trials of varying success, European broadcasters are most interested in exploiting 5G Broadcast as part of their hybrid offerings with hopes of reaching mobile devices. The key missing ingredient is support by the major device makers.

IP Security For Broadcasters: Part 12 - Zero Trust

As users working from home are no longer limited to their working environment by the concept of a physical location, and infrastructures are moving more and more to the cloud-hybrid approach, the outdated concept of perimeter security is moving aside…

Disruptive Future Technologies For HDR & WCG

Consumer demands and innovations in display technology might change things for the future but it is standardization which perhaps holds the most potential for benefit to broadcasters.

EdgeBeam Wireless Technology Furthers ATSC 3.0 Datacasting

Simultaneous broadcast of real-time data to an unlimited number of one-way receivers and locations is the unique catalyst of the amazing potential of the Broadcast Internet. EdgeBeam Wireless is a new market offering from a group of TV broadcasters seeking…