DVB Group Publishes Native IP To Unite Broadband And Broadcast TV

The DVB Group based in Geneva has ushered in its specification for converged linear broadcast and internet video delivery around IP systems.

Called DVB-NIP (Native IP), this is aimed at satellite and terrestrial delivery, replacing the MPEG-2 Transport Stream, that has served DVB broadcast systems until now, with native IP, even when still using either DVB-S2X or DVB-T2 bearers for linear broadcast transmission.

DVB-NIP had already been announced with some aspects shown at the DVB’s online DVB DEMOS event in October 2021, and has resulted from a year of technical work by representatives of more than 13 member companies from across the media delivery value chain. The system was designed to bridge the gap between broadband and broadcast networks, combining the efficiency of traditional broadcast networks for large-scale one-to-many content distribution with the unicast capability of broadband networks, targeting the same IP end devices. Apart from harmonizing linear and online delivery, one advantage is that the same broadcast signal embraces both professional applications such as serving CDN caches, or content distribution to mobile cellular tower sites for onward delivery to devices, and also consumer applications such as DTH and terrestrial TV services.

With NIP, the DVB is more or less aligned with the American ATSC 3.0 standard, which achieved a similar convergence between broadband and broadcast delivery. As one example, DVB NIP supports roaming between mobile video and broadcast delivery in say a car, just as ATSC 3.0 does. The benefit is that the service can switch to the service best placed to deliver video at a given time, depending on criteria such as congestion, nature of the content and current demand for it.

But whereas ATSC 3.0, sometimes dubbed Next Gen TV in the USA, was designed more or less from the ground up for hybrid TV, with a complete new set of signalling protocols, DVB-NIP is more the end of a journey past a series of milestones. While ATSC 3.0 implements a new Link Layer protocol called ALP that is mapped onto the ATSC 3.0 OFDMA RF modulation, DVB uses the existing Generic Stream Encapsulation (GSE) at the datalink (point to point) level for all DVB modulations.

Apart from GSE, DVB-NIP reuses six other existing DVB standards, including several defined earlier for broadband IP networks, adapting them for use also on broadcast networks of whatever scale. These are DVB-I for service discovery and programme metadata, DVB-AVC (Audio and Video Coding), DVB-DASH for internet delivery via HTTP adaptive streaming, DVB-MABR for multicast distribution, DVB-S2X/ DVB-T2 for physical transport, and DVB-HB (Home Broadcast) for in-home distribution applications.

Of these, DVB-I is the pivotal standard since it ensures linear TV can be streamed at full quality over the internet, therefore enabling integration between the two at the content and service level. This embraces signalling of linear TV or radio services and content that can be delivered over broadband, consistent access to linear TV services whether delivered by broadband or RF-based linear technologies, along with metadata and mechanisms for presentation of electronic programme guides. DVB-I also unifies linear services delivered by the RF-based DVB tuner with those delivered by broadband into a single coherent package under a common consistent UI.

As part of its accommodation with broadband, DVB-NIP works for either traditional one-way services, or interactive or two-way delivery. For the latter, most available return path forms are supported, including cellular, fibre, DSL, WiFi and even satellite in the case of VSAT services.

The DVB pointed to potential cost savings and new revenues from a transition to native-IP delivery, primarily from being able to use a single unified OTT headend to target all end devices. “Unification is also possible in IP-based client devices, digital rights management solutions and content formats,” DVB added. “New revenues can stem from reaching a wider pool of devices and selling higher value advertising slots based on targeting and newly available analytics.”

You might also like...

Innovating The Interactive Sports Fan Experience - Monumental Sports Network Are Early Adopters

As we continue our dive into the new frontier of Interactive Rights we explore the first steps taken by an early adopter. Monumental Sports Network in Washington are far from implementing a complete portfolio of interactive enhancements to their broadcasts…

Monitoring & Compliance In Broadcast: Monitoring Cloud Infrastructure

If we take cloud infrastructures to their extreme, that is, their physical locality is unknown to us, then monitoring them becomes a whole new ball game, especially as dispersed teams use them for production.

Neutral TV Operating Systems

TV OSs have become pivotal to both smart TVs and streaming services as consumers continue to cut the cord. There is growing interest not just among TV makers but also major streaming and advertising platforms in neutral TV OSs independent…

Sweden’s Accelerating Journey From DTT To OTT

2025 may be a watershed year for the broadcast delivery switchover from DTT (Digital Terrestrial Television) to IP (Internet Protocol). We know that an increasing number of viewers of broadcaster content are turning to their favorite streaming apps to watch the…

Microphones: Part 9 - The Science Of Stereo Capture & Reproduction

Here we look at the science of using a matched pair of microphones positioned as a coincident pair to capture stereo sound images.