Mo-Sys Launches G30 Gyro-stabilized Head
Radical design includes a universal camera cage, semi-automated balancing, and an innovative control console.
Mo-Sys Engineering has announced the availability of its ground-breaking G30 gyro-stabilized head. The unique design has been refined using extensive real-world experience resulting in a stabilized head that has the performance of much more expensive systems, but with the usability and ease of setup of much simpler gimbal devices.
Key technologies designed based on early adopter feedback, include:
- Balance assist – smart axis hold feature for significantly faster set-up of camera payloads
- Innovative control console - for fast, accurate operation in the heat of production
- Universal camera cage - to accommodate all practical camera payloads
The goal of Mo-Sys in designing the G30 was to make a gyro-stabilized head that would meet the needs of any broadcast or movie application; simple setup and operation, minimised complexity by negating sliprings and counter-balance weights, and support for the widest range of camera payloads.
At the heart of the G30 is a unique 45˚ frame geometry, large enough to accommodate any camera rig including large ENG cameras and complete digital cinematography camera rigs. The short, stiff frame provides rigidity for camera payloads up to 30kg, with high-torque direct drive motors for smooth, precise movement along with excellent stabilization. The result is a gyro-stabilized head that has complete freedom of pan and tilt in any configuration, along with ±45˚ roll.
“In conversation with early adopters, the feedback was for simpler operation and faster setup,” said Michael Geissler, CEO of Mo-Sys. “In response, we modified elements of the design, such as the frame size, but we also took the opportunity to suggest some smart technologies we were developing. These were well received and so were also implemented into the G30 design”.
“One of these is the balance assist feature which enables an operator to balance each axis in isolation while the remaining two axes hold the camera, significantly reducing the setup time,” Geissler continued. “Another is inertia sensing with pre-sets for various camera packages, along with recallable custom settings for previously used camera packages.”
You might also like...
Live Sports Production: Part 1 - New Sports Production Workflows
Welcome to Part 1 of ‘Live Sports Production’ - This new multi-part series uses a round table style format to explore the technology of live sports production with some of the industry’s leading system designers. It is a fascinating insight i…
Automating HDR-SDR Conversion
Automation seems like an obvious solution but effective conversion involves understanding what the image content is and therefore what the priorities are for how it should look.
Microphones: Part 5 - The Variable Directivity Microphone
The variable directivity microphone is very popular for studio work. What goes on inside is very clever and not widely appreciated.
Deep Learning Accelerates Object Tracking In TV Production
Advances in application motion tracking in audiovisual production, both live and recorded, have been slow until recently accelerated by the advent of modern AI techniques associated with neural network based deep learning and mathematical graph theory. These advances have converged…
The Creative Challenges Of HDR-SDR Simulcast
HDR can make choices easier - or harder - at every stage of production but the biggest challenge may be just how subjective those choices are.