FUJIFILM Launches Sustainable Data Storage Initiative
FUJIFILM’s new LTO-9 data cartridge.
Aim is to highlight how tape technology can significantly reduce electricity consumption and CO2 emissions related to data storage.
New research from IDC estimates that, globally, data centres can reduce CO2 emissions by over 43%, or 664 million metric tonnes by 2030. Fujifilm's part in that is a Sustainable Data Storage Initiative which highlights how tape technology can significantly reduce electricity consumption and CO2 emissions related to data storage.
“We’re proud to launch the Sustainable Data Storage Initiative to help spread awareness of today’s modern data tape technology as a solution to reducing CO2 emissions from data storage operations while simultaneously being very cost-effective,” said Hironobu Taketomi, President, Fujifilm Recording Media USA. “Beginning with this study, Fujifilm’s global initiative will help companies around the world make smart decisions when assessing their storage options with sustainability objectives in mind.”
A related IDC whitepaper summarises findings on how to enhance the sustainability of data storage. Following are key highlights from the paper:
- Reporting from several major data centres found that energy consumption increased by 31% from 2017 to 2020, and the amount of data stored in data centres is expected to grow by 27% each year through to 2025.
- Relying on renewable energy alone is not enough to keep up with rapid growth in data centres’ power consumption. Water, wind and solar power also have their own associated impacts on the environment (i.e., disposing of wind turbines and solar panels).
- To negate this growing issue and protect the environment from further damage, IDC estimates that strategically migrating more data storage to tape can reduce CO2 emissions by 43.7%, or 664 million metric tonnes, by 2030.
- Tape storage offers additional security benefits such as immutability, encryption features and offline “air gap” protection against cyber criminals.
- Tape is the most cost-effective storage media on a cost per gigabyte basis, requires minimal power to operate and is reliable for storing data for periods exceeding 30 years with an excellent bit error rate.
You might also like...
Designing IP Broadcast Systems - The Book
Designing IP Broadcast Systems is another massive body of research driven work - with over 27,000 words in 18 articles, in a free 84 page eBook. It provides extensive insight into the technology and engineering methodology required to create practical IP based broadcast…
Demands On Production With HDR & WCG
The adoption of HDR requires adjustments in workflow that place different requirements on both people and technology, especially when multiple formats are required simultaneously.
If It Ain’t Broke Still Fix It: Part 2 - Security
The old broadcasting adage: ‘if it ain’t broke don’t fix it’ is no longer relevant and potentially highly dangerous, especially when we consider the security implications of not updating software and operating systems.
Standards: Part 21 - The MPEG, AES & Other Containers
Here we discuss how raw essence data needs to be serialized so it can be stored in media container files. We also describe the various media container file formats and their evolution.
NDI For Broadcast: Part 3 – Bridging The Gap
This third and for now, final part of our mini-series exploring NDI and its place in broadcast infrastructure moves on to a trio of tools released with NDI 5.0 which are all aimed at facilitating remote and collaborative workflows; NDI Audio,…