Hiltron Introduces High-Accuracy 3D Laser Scanning Service For Teleport Antennas

3D laser scanning of a large satellite antenna in progress.
Hiltron Communications is introducing a service allowing 3D laser scanning and evaluation of teleport antennas. Based on technology developed by Hiltron’s subsidiary partner, ESA Microwave GmbH, this new resource allows reflectors of practically any size to be measured quickly and accurately.
“Satellite teleports have massively expanded in number since the mid 1980s,” says Hiltron sales manager Jean-Luc George van Eeckhoutte. “Many reflectors currently in use date back to those early years and are now performing with reduced efficiency. This new service allows reflectors to be checked in very high resolution as part of a complete performance evaluation. The 3D laser scanning technique we use is far more accurate than the commonly used photogrammetry technique and can be performed while the antenna is actually in operation. It is also much more efficient than photogrammetry which requires manual attachment of measurement targets to the reflector, a time-consuming process and one which results in only a few hundred points being measured."
Hiltron's 3D laser scanning service allows a million surface reference points per second to be captured with a geometric accuracy of less than 1 mm. The resultant information is integrated into a cloud of approximately 60 million points which is then used to create a computer-aided design model.”
After digitisation and computation of the reflector and sub-reflector topography, the ingested data are used to calculate alignment, registration and any required fine-tuning such as surface restoration. Measured specifications and related performance parameters are delivered to the antenna operator or owner together with recommendations clarifying whether the antenna would benefit from upgrading, conversion or fitting with a multi-band feed system.
The 3D laser scanning service is available to new and existing Hiltron customers for any brand and model of satellite antenna up to 35 metres in diameter.
You might also like...
Broadcast Standards - The Book
Broadcast Standards – The Book is a unique reference resource for broadcast engineers, operators and system designers. Never before has such a huge body of broadcast industry specific information been collated from international standards bodies and distilled into a single source o…
Live Sports Production: Control Room Teams & Workflow
Why the composition and workflow of the gallery creative team have remained largely unchanged for many years… and the effort taken by engineering to support creative teams.
Microphones: Part 7 - Microphones For Stereophony
Once the basic requirements for reproducing sound were in place, the most significant next step was to reproduce to some extent the spatial attributes of sound. Stereophony, using two channels, was the first successful system.
Building Software Defined Infrastructure: Part 2 - Processing & Streaming Media Essence
Welcome to Part 2 of Building Software Defined Infrastructure - a new multi-part content collection from Tony Orme. This series is for broadcast engineering & IT teams seeking to deepen their technical understanding of the microservices based IT technologies that are…
IP Security For Broadcasters: Part 12 - Zero Trust
As users working from home are no longer limited to their working environment by the concept of a physical location, and infrastructures are moving more and more to the cloud-hybrid approach, the outdated concept of perimeter security is moving aside…