Hiltron Introduces High-Accuracy 3D Laser Scanning Service For Teleport Antennas

Hiltron Communications is introducing a service allowing 3D laser scanning and evaluation of teleport antennas. Based on technology developed by Hiltron’s subsidiary partner, ESA Microwave GmbH, this new resource allows reflectors of practically any size to be measured quickly and accurately.

“Satellite teleports have massively expanded in number since the mid 1980s,” says Hiltron sales manager Jean-Luc George van Eeckhoutte. “Many reflectors currently in use date back to those early years and are now performing with reduced efficiency. This new service allows reflectors to be checked in very high resolution as part of a complete performance evaluation. The 3D laser scanning technique we use is far more accurate than the commonly used photogrammetry technique and can be performed while the antenna is actually in operation. It is also much more efficient than photogrammetry which requires manual attachment of measurement targets to the reflector, a time-consuming process and one which results in only a few hundred points being measured."

Hiltron's 3D laser scanning service allows a million surface reference points per second to be captured with a geometric accuracy of less than 1 mm. The resultant information is integrated into a cloud of approximately 60 million points which is then used to create a computer-aided design model.”

After digitisation and computation of the reflector and sub-reflector topography, the ingested data are used to calculate alignment, registration and any required fine-tuning such as surface restoration. Measured specifications and related performance parameters are delivered to the antenna operator or owner together with recommendations clarifying whether the antenna would benefit from upgrading, conversion or fitting with a multi-band feed system.

The 3D laser scanning service is available to new and existing Hiltron customers for any brand and model of satellite antenna up to 35 metres in diameter.

You might also like...

HDR & WCG For Broadcast: Part 3 - Achieving Simultaneous HDR-SDR Workflows

Welcome to Part 3 of ‘HDR & WCG For Broadcast’ - a major 10 article exploration of the science and practical applications of all aspects of High Dynamic Range and Wide Color Gamut for broadcast production. Part 3 discusses the creative challenges of HDR…

IP Security For Broadcasters: Part 4 - MACsec Explained

IPsec and VPN provide much improved security over untrusted networks such as the internet. However, security may need to improve within a local area network, and to achieve this we have MACsec in our arsenal of security solutions.

Standards: Part 23 - Media Types Vs MIME Types

Media Types describe the container and content format when delivering media over a network. Historically they were described as MIME Types.

Building Software Defined Infrastructure: Part 1 - System Topologies

Welcome to Part 1 of Building Software Defined Infrastructure - a new multi-part content collection from Tony Orme. This series is for broadcast engineering & IT teams seeking to deepen their technical understanding of the microservices based IT technologies that are…

IP Security For Broadcasters: Part 3 - IPsec Explained

One of the great advantages of the internet is that it relies on open standards that promote routing of IP packets between multiple networks. But this provides many challenges when considering security. The good news is that we have solutions…