Lithium-Ion Batteries, a Staple for Broadcasting, Wins the Nobel Prize in Chemistry
John B. Goodenough, M. Stanley Whittingham and Akira Yoshino were jointly awarded the Nobel Prize in Chemistry for their development of lightweight lithium-ion batteries, the Royal Swedish Academy of Sciences has announced.
“Lithium-ion batteries have revolutionized our lives and are used in everything from mobile phones to laptops and electric vehicles,” the Nobel Prize committee said in a statement following the announcement. “Through their work, this year’s Chemistry laureates have laid the foundation of a wireless, fossil fuel-free society.”
Lithium-Ion Batteries have also revolutionized video, audio and a wide range of smaller tools used by broadcasters and content producers.
Whittingham, a professor at Binghamton University, State University of New York, began developing methods for fossil fuel-free energy technologies starting in the 1970s and discovered a cathode — or a type of electrical conductor through which electrons move — in a lithium battery. His discovery resulted in the first functional lithium battery.
The other two scientists developed new innovations based on that battery.
Goodenough, a professor at the University of Texas at Austin, discovered that the cathode would have greater potential if it were made with a different material and showed that cobalt oxide with intercalated lithium ions could produce a higher voltage.
Yoshino, an honorary fellow for the Asahi Kasei Corp. in Tokyo and a professor at Meijo University in Nagoya, Japan, then eliminated pure lithium from the battery, instead using only lithium ions, which are safer. He created the first commercially viable lithium-ion battery in 1985.
Since Lithium-Ion Batteries were introduced to the market in 1991, their light weight made portable electronics a staple of modern life.
The batteries contribute to reducing the impact of climate change by enabling a switch from fossil fuel energy to renewable and sustainable forms.
“Development of these batteries is a huge step forward, so we that we can really store solar and wind energy,” said Sara Snogerup Linse, the chairwoman of the Nobel Committee for Chemistry.
You might also like...
A New Year Speculation On Immersion
As we head into another new year it seems ok to indulge in some obvious speculation about what the future may bring. Here we consider the proposition that eventually, and probably not far into the future, broadcasters will have to…
Microphones: Part 4 - Microphone Technology - The Diaphragm
Most microphones need a diaphragm in order to follow some aspect of the air motion that carries the sound.
HDR & WCG For Broadcast: Part 3 - Achieving Simultaneous HDR-SDR Workflows
Welcome to Part 3 of ‘HDR & WCG For Broadcast’ - a major 10 article exploration of the science and practical applications of all aspects of High Dynamic Range and Wide Color Gamut for broadcast production. Part 3 discusses the creative challenges of HDR…
The Resolution Revolution
We can now capture video in much higher resolutions than we can transmit, distribute and display. But should we?
Microphones: Part 3 - Human Auditory System
To get the best out of a microphone it is important to understand how it differs from the human ear.