Field Report: 8K UHDTV Takes Big Step in Tokyo
Unique Rohde & Schwarz product used for testing replaces a full rack of separate signal generators.
Japanese broadcasters are preparing for the 2020 Tokyo Olympic Games, including getting ready for 8K UHDTV. In 2018, public broadcaster NHK will roll out the needed ISDB-S3 standard. The multichannel R&S SLG signal generator from Rohde & Schwarz was used for the 8K satellite tests.
Rohde & Schwarz and SiTune have successfully tested the new Japanese 8K ultra-high-definition ISDB-S3 standard. The R&S SLG satellite load generator from Rohde & Schwarz generated the ISDB-S3 test signals.
The R&S SLG simultaneously generates up to 32 satellite transponders in real time. The extremely compact 1 RU device is the first signal generator with this capability. The R&S SLG can be operated from 250 MHz to 3225 MHz with a 500 MHz modulation bandwidth.
SiTune successfully tested its tuners for 8K Ultra High-Definition satellite TV in line with the ISDB-S3 standard provided by the R&S SLG. SiTune Corporation manufacturers RF and mixed signal semiconductors, silicon tuners enabling triple-play, satellite and terrestrial / cable receivers.
In the interoperability test, the SiTune STN6528 tuner successfully received and demodulated the ISDB-S3 signal. SiTune already introduced the world's first ISDB-S3 tuner in January 2016. By the second quarter of 2018, the manufacturer will start mass production of the tuner, which supports satellite, terrestrial and cable reception. The SiTune STN6528 tuner was operated as a plug-in board on an SC1501 demodulator evaluation board from Socionext.
Users can choose from multiple transmission standards, including DVB-S, DSNG, DVB-S2, DVB-S2 wideband, DVB-S2X (also with channel bonding), ISDB-S and ISDB-S3. Several R&S SLG generators can be cascaded to generate signals for the entire satellite IF band. In multicarrier operation, the R&S SLG generates up to 32 transponder signals and transmits the content of transport streams that are fed into the instrument via an ASI, Gigabit Ethernet or optical SFP+ interface via IP.
The R&S SLG is designed for developing and testing set-top boxes and tuners in the consumer equipment industry as well as for testing professional satellite terminals, terrestrial satellite station receivers and components, and for satellite payloads in the aerospace and defense industry. Satellite operators use the R&S SLG to simulate transponders and for tests to optimize transmissions.
You might also like...
Designing IP Broadcast Systems - The Book
Designing IP Broadcast Systems is another massive body of research driven work - with over 27,000 words in 18 articles, in a free 84 page eBook. It provides extensive insight into the technology and engineering methodology required to create practical IP based broadcast…
Demands On Production With HDR & WCG
The adoption of HDR requires adjustments in workflow that place different requirements on both people and technology, especially when multiple formats are required simultaneously.
If It Ain’t Broke Still Fix It: Part 2 - Security
The old broadcasting adage: ‘if it ain’t broke don’t fix it’ is no longer relevant and potentially highly dangerous, especially when we consider the security implications of not updating software and operating systems.
Standards: Part 21 - The MPEG, AES & Other Containers
Here we discuss how raw essence data needs to be serialized so it can be stored in media container files. We also describe the various media container file formats and their evolution.
NDI For Broadcast: Part 3 – Bridging The Gap
This third and for now, final part of our mini-series exploring NDI and its place in broadcast infrastructure moves on to a trio of tools released with NDI 5.0 which are all aimed at facilitating remote and collaborative workflows; NDI Audio,…