Digital audio relies completely on the accuracy of quantization and it is important to see how it works.
With the release of the core parts of the SMPTE ST 2110 suite, the confusion around different transport standards for audio and video over IP is settled. However, the adoption of these solutions for day-to-day use is still far from easy. While there are more and more pure IP facilities and OB trucks now in service, they take significant time to set up and are only practical when a single vendor interface is used.
The consumer video market is growing fiercely competitive between content creators and content aggregators and OTT live and OTT VOD formats are growing increasingly fragmented. Consumers are benefiting from the tremendous choice of content and sources for that content while their tolerance for a negative Quality of Experience (QoE) continues to fall. Providers find themselves in the stark reality of having to balance getting to market faster, with greater unit cost efficiencies and with persistent QoE.
When the pandemic began shutting down TV stations in the spring of this year, journalists and producers were left to figure out how to work from home and set up technical systems they were very unfamiliar with. In many cases panic set in.
Among a number of things, the pandemic has accelerated product development timelines for remote production and the migration to virtualized IP infrastructures, supporting the ability to produce content remotely and stay socially distanced. Many of these new tools were already in place but were often still in early stages, and some were cobbled together nearly on the fly as broadcasters coped with the careful return of live sports.
Will alternative immersive channels create an imperative for broadcasters? Veronique Larcher, Director of AMBEO Immersive Audio, Sennheiser, explores immersive content outside of the commercial broadcast space, including virtual, augmented, and mixed realities.
Digital audio relies completely on sampling and no treatment of the subject can be complete without looking at how it works.
HRTF stands for Head Related Transfer Function and, simply put, is a catch-all term for the characteristics a human head imparts on sound before it enters the ear canal. Everything from level tonal changes caused by our head, shoulders, and pinna (external ear parts), to arrival-time differences (Interaural Time Difference, or ITD) between the two ears have an effect on our perception of the direction and distance of sources.