
EG
ESSENTIAL GUIDES

Essential
Guide

Microservices For
Broadcasters

Computer systems are driving
forward broadcast innovation and the
introduction of microservices is having a
major impact on the way we think about
software. This not only delivers improved
productivity through more efficient
workflow solutions for broadcasters,
but also helps vendors to work more
effectively to further improve the
broadcaster experience.

One of the great advantages of moving
to COTS systems and IT infrastructures
is that we can benefit from developments
in seemingly unrelated industries.
Microservices have gained an impressive
following in enterprise application
development and many of the design
methodologies transfer directly to
broadcast infrastructures.

Scaling broadcast facilities has long been
the goal of many system designers and
television, by its very nature has times of
peak demand when viewing audiences
gather to watch high value programs
such as Saturday night entertainment or
prominent sports events. Traditionally,
broadcasters would need to design
their systems for the highest peak-
demand events, often this was difficult to
accomplish due to the massive number
of unknown variables in the system
leading to significantly increased costs
and complexities.

Microservices are distributed software
modules and combined with virtual
machine infrastructures can easily
scale to deliver on-demand services
to facilitate peak requirements.
Furthermore, due to the functional
nature of microservices, new processing
systems can be developed independently
of the rest of the software. This promotes
specialist agile teams to safely develop
specific functionality such as adding
Rec.2020 color space to an existing
video processing component.

Agile methodologies have been making
significant inroads into all areas of
software development and microservices
benefit greatly from the agile philosophy.
They encourage and deliver software
based on relevant functionality as
opposed to often outdated preconceived
ideas from years earlier. Agile no longer
uses the waterfall method of project
management, further empowering
software teams to change quickly
to meet the varying and increasing
requirements of broadcasters. New
components can be quickly and safely
developed and deployed as the modular
nature encourages deep and efficient
software testing.

Although many broadcast infrastructures
have vendor commonality in their choice
of studio, edit and playout design choice,
they vary greatly in their workflow
implementations leading to significant
variations in broadcaster requirements.
With traditional hardware and software
solutions, broadcasters would often
have to compromise their workflow
requirements as bespoke code would
be needed to facilitate them resulting in
complex and difficult to manage systems.
Microservices go a long way to rectify
this as the agile and distributed nature of
their design means software interfaces
can be written with greater ease and
significantly reduced risk.

Simplification is key to flexibility and
scalability, and microservices definitely
deliver this. Instead of having a huge
monolithic code base with code
variations to meet the specific needs
of clients, microservices promote a
generalized core code base that can be
easily tested and verified. RESTful API’s
with loosely coupled interfaces further
improve the broadcaster experience as
modifications and bespoke additions can
be relatively easily facilitated.

To fully appreciate the advantages of
microservices, it helps to understand
how software teams have worked in the
past, how software was built, and the
associated risk of monolithic design. This
Essential Guide explains the challenges
faced by software teams using waterfall
project management when delivering
monolithic code and then goes on
to discuss and describe how agile
development and microservices deliver
unprecedented flexibility and scalability
for broadcasters.

Microservices deliver a huge benefit
to broadcasters and are the future of
software provision for any broadcaster.
This Essential Guide will help you
understand why.

Tony Orme
Editor, The Broadcast Bridge

Introduction

2 © The Broadcast Bridge 2020

Tony Orme.

Microservices For Broadcasters

By Tony Orme, Editor at The Broadcast Bridge

Software continues to dominate
broadcast infrastructures. Control,
signal distribution, and monitoring are
driving software adoption, and one
of the major advantages of moving
to computer systems is that we can
ride on the crest of the wave of IT
innovation. In this Essential Guide,
we investigate Microservices to
understand them and gain a greater
appreciation for their applications in
broadcasting.

Understanding the benefits of
microservices to end users and
broadcasters requires some background
knowledge of earlier software
development, the philosophy of design,
and how developers actually tackle
solutions.

Traditional software architectures were
monolithic in design. That is, there was
one big homogenous version of the
executable code that provided the full
end to end user experience. It would
accept inputs through the user interface,
access data through some sort of
database, accept information through
input/output interfaces, process the
data, and provide the user response.

© The Broadcast Bridge 20203

© The Broadcast Bridge 2020

Monolithic Code

A complete program was divided into
many files to provide the source code.
Using a compiler, each source file was
processed in turn to provide a single
executable file that would be executed
by the host operating system for the
computer.

To make development easier, monolithic
code can be modularized through the
use of libraries. One example of this is
code written in C or C++ using static
libraries. Code is divided into multiple
functional units that can be compiled into
object code. This is a sort of intermediate
assembly code that is hardware and
operating system dependent but
contains labels instead of addresses
for memory locations. Each copy of the
object code is then joined by the linker
to resolve the label memory addresses
resulting in a single executable program.

A development of this system used
dynamic libraries and two types are
available; dynamically linked at run-time,
and dynamically loaded and unloaded
during execution. For dynamically
linked programs, the libraries had to be
available during the compile and linking
phases, but the libraries are not included
in the executable code distribution.
Dynamically loaded and unloaded
programs use a loader system function to
access the libraries at execution time.

Modularity has always been a key
requirement for developers as it
promotes code reuse to improve
efficiencies and reduce the possibility of
bugs creeping in. If you already have a
library that provides a function to provide
low-level access to the ethernet port for
example, then why bother re-writing it?

Although the library approach makes
monolithic code modular, it still suffers
from some severe restrictions.

Flexibility Demands

Providing reliable, efficient and flexible
code is the goal for any vendor or
software developer. The term “flexible”
is key to understanding the limitations of
traditional monolithic code development.

Developers in software teams building
monolithic code cannot work in isolation.
Although it may be possible to break the
code into functional units to allow parallel
development cycles, the functions
must be tightly coupled. That is, the
interface design to the function must
be well defined before coding can start.
As functional requirements change, the
interfaces must change across the whole
design. This can have consequences
for the rest of the team and changing
interface or data specifications in a
monolithic design results in the ripple
effect.

Developers may be working on many
different parts of the code base at
the same time. Systems such as unit
testing do exist to allow a developer to
independently test the function they
are working on. But every so often, the
whole team must stop, and a complete
re-compile of the software is executed
so that the entire program can be tested
again.

Increasing Monolithic
Complexity

Unit testing is the process of applying
known test data to a function, or group
of functions and confirming the test
complies with a known result. This is
all well and good, but the complexity of
testing increases exponentially as the
type of data being tested also increases.
Consequently, it’s almost impossible to
test every unit in isolation and expect the
whole system to work. At some point, the
whole code base must be re-compiled
and tested.

One of the major challenges of compiling
the monolithic code is establishing all
the software interfaces still work and are
correct after any changes. For example, if
we modify a function called video_Proc(),
in a previous version of the code, there
may be three parameters passed to a
function, but in the new version of the
code there may be four. As monolithic
code uses functions that are tightly
coupled, every function using video_
Proc() will need to have its interface
updated.

Diagram 1 – For monolithic code, multiple files are compiled into object files and then linked with external libraries to provide a single executable file. Each
developer may work on one or more source files simultaneously and as monolithic code is tightly coupled, they must make sure their functional interface
designs and data formats are exactly the same. This can be the source of bugs, and compiler and linker issues due to the ripple effect.

4

SOURCE FILE
1

COMPILER

COMPILER

COMPILER

OBJECT
FILE

SOURCE FILE
2

OBJECT
FILE

LINKER
EXECUTABLE

FILE

SOURCE FILE
3

OBJECT
FILE

PROGRAM
LIBRARY

© The Broadcast Bridge 2020

It may take some time to work through
the whole code base to find all references
to this function, change the number of
parameters passed to it and recompile.
Even with modest sized software teams,
the code base can soon expand into tens
and hundreds of thousands of lines of
code. Solutions such as polymorphism
exist to overcome this, but such object-
oriented design philosophies soon
become complex and difficult to manage
and have their own challenges.

This complexity is undesirable and
leads to slow release times and difficult
to manage code, furthermore, it’s very
difficult to meet the unique and specific
demands of individual clients.

In the ideal world, a vendor would
be able to provide a single version
of code for every one of their clients.
With small applications such as phone
apps this is possible. However, no two
broadcast facilities are the same and
workflows generally differ, even if the
same infrastructure components and
vendors are used. Localization in the
form of best working practices and
transmission formats all conspire to
create individually complex broadcast
systems. Consequently, vendors must
provide flexibility in their code design to
facilitate client requirements.

Hardware Development is Slow

We rely on specifications such as
SMPTE’s ST-2110 to provide common
signal distribution for video and audio
over IP distribution. These standards
are often years in the planning and are
generally static once released. They do
get updated occasionally but they are
usually always backwards compatible.
New releases are relatively infrequent as
they often result in hardware changes
that can take many months to implement.
However, users and clients have become
used to much shorter development
cycles for software-based products and
are usually not willing to wait years for a
solution.

Another consequence of the much
shorter design cycle is that vendors tend
to design their own data exchange and
control interfaces and simply do not
have the time to engage in committee
meetings to agree the next MAM
interface standard. And even if they
did, the rapid development of current
software technology means standards
such of these would most probably
be out of date even before they were
published. Therefore, the software must
be flexible to be able to interface to any
other system.

This is possible in monolithic designs
and a great deal of flexibility has been
provided in recent years. However, the
challenges for the development teams
increase exponentially. To facilitate
different control interfaces, unique to
specific clients, the software teams
must continually support the modules
associated with that client for evermore.

Scalability Requirements

Another challenge monolithic code
presents, is that of scalability. One of
the key advantages cloud computing
provides, whether public or private, is the
ability to scale resource as and when we
need it. As more user demand is placed
on the code, the underlying resource
supporting it must also be increased.

Monolithic code, can, to a certain extent,
scale to meet increased user demands.
This is achieved by increasing the
number of instances of the code running
behind a device such as a load balancer.
The load balancer can detect the number
of user requests and when they pass a
certain threshold, spin up new instances
of the code. This is how traditional web
servers worked using solutions such
as Apache. However, monolithic code
cannot scale to meet the demands of
increasing data volume as each instance
of the program will need access to all of
the data. This potentially makes memory
management and caching inefficient and
can lead to contended I/O access.

Also, different functions within the
program may have different resource
requirements. For example, a video
compression function may be CPU
intensive, whereas a video processing
function may be GPU intensive.
Monolithic code does not allow us to
easily split the code into functional
components to maintain scalability to this
granularity, and hence efficiency.

5

ACCEPTANCE TESTING

SYSTEM TESTING

INTEGRATION TESTING

UNIT TESTING

Diagram 2 – Unit testing is part of a full testing strategy and allows individual components to be tested
so that they can be validated to confirm they work in accordance with the design. Integration testing
combines related components and functions to test for defects in the system (ripple effects will be seen
here). System testing checks for compliance against the specified requirements of the software as a
whole. Acceptance testing confirms the software works as the client expects.

© The Broadcast Bridge 2020

Microservices to the Rescue

The solution to many of these challenges
is the use of Microservices.

Microservices is a generic name given
to a software development method that
arranges a program as a collection of
loosely coupled functions (or services).

Loosely coupled is the opposite of
tightly coupled. In the monolithic code
description earlier the effects of tightly
coupled interfaces led to the ripple
down effect on the rest of the program.
However, with loosely coupled systems,
each component (or function) has little
knowledge of the definitions of other
components. Consequently, components
can be replaced with other versions of
the component that provide the same
function with greater ease and reliability.

Unlike monolithic code, microservices,
through loose coupling can exist on
multiple platforms with different code
base and interface methods. For
example, the video processing function
may exist on virtualized instances with
GPU resource. The user interface code
might call this as part of a workflow
when the user uploads a video file using
a messaging system such as RESTFul
(Representational State Transfer) API’s.

Message Queuing

RESTFul is a hardware and operating
system agnostic method of exchanging
messages between software
components. Webservices notably use
this system through HTTP methods.
Messages such as GET, HEAD, and
POST (to name but a few) are sent from
a web browser to server to send and
receive web pages and information.
Microservices use a similar method
allowing them to take full advantage of
distributed system programming.

This leads onto the concept of message
queuing. Each component requiring a
video processor will send a message
to the video processing component.
A load balancer, or similar middleware
message processor can determine the
number of messages in a queue for
the video processor, and if there is too
much of a backlog then it can spin up
new instances of the service on a new
virtualized server.

When the backlog of message queues
has been serviced, the instances will
be switched offline and then deleted.
Again, greatly improving efficiency for the
broadcaster.

As well as providing a system that can
be massively and relatively easily scaled,
microservice designs lead to greater
programming efficiency for software
teams resulting in much improved
reliability and cost savings.

User Expectations

As new user requirements are continually
expanding the size of the code base,
monolithic designs soon become
incredibly big and difficult to follow. Due
to the tight coupling and associated
ripple effect of this architecture,
developers must have a picture of the
entire code architecture in their heads
when they start programming.

For new members of the team this can be
incredibly intimidating, and for existing
members it means that they must
constantly increase their understanding
of the whole design, even the areas of
code their colleagues are working on
that doesn’t necessarily affect them. This
leads to inefficient allocation of highly
qualified developers, and a great deal
of stress and risk every time the code is
recompiled.

As microservices are loosely coupled,
many of these issues are resolved.
Developers can work in small teams as
each feature is considered a component
in its own right and can be developed
independently of the rest of the team. For
example, if the video processor needs to
be improved to work with Rec.2020 wide
color gamut, then the team responsible
for this service can work on and deploy
the service as required. It will maintain
its backwards compatibility with Rec.709
color space so the services calling this
function will not require changing or
notifying, so there is no re-compilation
and consequently no ripple down effect.

6

VIDEO
HD-SD

CONVERTER
MICROSERVICE

VIDEO
TRANSCODE

MICROSERVICE

MAM
CONTROL

SEND

MESSAGE

RETURN
MESSAGE

SEND
MESSAGE

RETURN

MESSAGE

Diagram 3 – The MAM system treats the microservice provider as a blackbox and has no knowledge of
the underlying hardware and operating system architecture of the microservice provider. As the work
load increases the microservice provider may decide to spin up more resource through virtualization
and then switch it off after the peak demand has reduced.

© The Broadcast Bridge 2020

Furthermore, if the developers of the
improved Rec.2020 video processor
decide it needs an updated GPU then
this can be achieved without notifying the
rest of the team. They may well mention
it in their weekly update meetings but
for the rest of the team it will not matter
as their messaging communication is
unchanged. In effect, this is treated as
a black box by the rest of the software
team.

Broadcasters benefit greatly from
this design philosophy as it promotes
flexibility and allows much easier
customization. If a broadcaster needs
to log events sent to a MAM service in a
particular format as part of their logging
and compliance requirement, then the
specific logging service can be adapted
without reference to the rest of the
code. This allows the vendor to better
understand the problem to be solved
and cost the work accordingly. They
also know the risk of side-effects and
consequently the risk to the rest of the
design will be greatly reduced, resulting
in a much improved and reliable service.

Reliability, Scalability and
Flexibility for Broadcasters

Being able to measure the number of
services and the frequency they are used
allows system integrators to be able to
calculate with high levels of accuracy, the
size of the hardware resource required.
Furthermore, this promotes virtualization
to take advantage of using pay as you
go hardware resource, further improving
efficiency.

Advanced logging and monitoring can
be easily provided at the microservices
level. The metrics help dev-ops and
system managers to understand which
parts of the system are working hardest,
or not at all. All this leads to much
greater efficiency, improved coding and
consequently greatly improved reliability.

Microservices create the reliability,
scalability, and flexibility broadcasters
have been demanding for many years.
The loosely coupled architecture further
allows vendors to quickly and reliably
build new services specifically for
the broadcasters and use-case. And
combined with virtualization and service
monitoring, highly adaptable systems can
be easily designed to further enhance
efficiency and reliability for broadcasters.

7

© The Broadcast Bridge 2020

By Neil Maycock, Senior Vice President – Strategic Marketing & Playout, Grass Valley

The Sponsors Perspective

Go Small To Go Big: Keeping Broadcasters Ahead Of The
Curve With Microservices

As a result, in some cases, we have a situation where
broadcasters’ revenues are growing more slowly than their
costs. In fact, the big question facing all broadcasters today is
how to create more first-class content more efficiently.

Timescales for bringing new services to market are also
compressing; from conception to launch is now a few months,
if not weeks, compared to the years it would have taken in the
past. Services today must also evolve very rapidly to keep pace
with their core audience demands and need to be able to spin-
down as fast as they are spun up.

Supported by

www.grassvalley.com

8

The media industry is evolving faster than at any point in its history. Broadcasters
and content producers are striving to meet consumers’ insatiable appetite for more
content, rich viewing experiences, stunning images and access across all screens.

© The Broadcast Bridge 2020

Supported by

9

Entrenched models can no longer be relied on to take on the
challenges of this new mediascape. On an operational level, a
vast amount of content is now being produced, ingested and
managed. Traditional broadcast architectures can’t scale at
the necessary volume or adapt as quickly as they now need
to, while the single-function system – although perfect for its
intended use – is unable to support broadcasters’ need for
hyper-agility.

Virtualization And Beyond

As an industry, we need technology and commercial models
that can support highly nimble operations. For their part,
vendors need to give customers platforms that can be deployed
at speed and rapidly evolved. Looking ahead, broadcasters
are going to need to be more agile than they’ve ever been,
delivering services that can stay ahead of the shifting needs of
the consumers.

The move from CAPEX to OPEX and workflows virtualized on
commodity hardware are steps in the right direction, giving
broadcasters more flexibility to add and pay for additional
capability and capacity as needed.

As broadcaster and media companies adapt to take on the
challenges of the new, dynamic market head-on, a cloud-native
or microservices approach enables them to take the next
leap in evolution. Microservices take the virtualized software-
based approach one step further, separating processes into
smaller more autonomous functions, and allowing multiple
microservices to be combined to deliver specific applications.

Microservices add greater degrees of inherent flexibility to
existing IT infrastructure. Once you get the IT right – whether
you’re running monolithic applications on it or microservices-
based ones, the hardware remains the same. Not only does this
model deliver the inherent nimbleness and flexibility needed
to shape successful media businesses for the future, it also
opens up new ways to build, maintain and operate services and
provides the capacity to scale these services – up or down – in
a very compressed time frame.

Getting It Right And Going Live

While new technologies always create a buzz, the challenge for
the broadcast industry is not to get side-tracked into replicating
old workflows or business models; shoehorning an existing
approach into a new paradigm means you miss all the benefits
that new technology brings. We’ve seen this with IP – in the
early days, as an industry we tried to map the SDI world to IP,
losing a lot of benefits that IP offers.

We need to avoid doing the same thing with cloud and
microservices. Instead of focusing on migrating applications
like playout on to cloud platforms and running them on a
microservices architecture, we need to look at where these
technologies can make the biggest impact. While playout
is technically the easiest thing to implement in a cloud
environment, it’s typically a 24/7 service, running with very high
utilization of the underlying infrastructure. This doesn’t make
the best use of the nimbleness that microservices deliver.

Live production – and particularly live sports – is where the
power of microservices has the potential to really come into
its own. Not only does this model lend itself really well to the
needs of live environments but this type of content is something
consumers place a higher value on – especially live sports.
Furthermore, they are willing to pay for it – PWC estimates that
over 90 percent of sports fans subscribe to services for access
to live games.

Being able to rapidly spin up temporary, subscription services
like a pay-per-view event or targeted, seasonal sports packages
– all Liverpool soccer games for instance – fast and cost
effectively is hugely valuable to broadcasters. Leveraging
microservices, capabilities can be fired up just before a game
then be turned off after the final post-game analysis wraps up.
In essence, you are only paying while the infrastructure is in
use.

As the technology matures, we can expect microservices
to be part and parcel of delivering transitory, live services,
where very bursty capacity is needed. On a technical level,
live is undoubtedly more challenging to do due to the time
constraints, but it’s certainly solvable and we’ll see solutions
hitting the market as soon as this year.

www.grassvalley.com

© The Broadcast Bridge 2020

Supported by

10

Vendors Must Answer The Call

As they meet these changing customer demands, the onus
is on the vendor community to develop applications that use
microservices, rather than taking our existing products and
reshaping them for the changing market. While broadcasters
have a real need for solutions that underpin new business and
operational models, our customers tell us they want technology
adoption to be largely hidden from them. The applications and
operation should be familiar and work as they need to.

Our customers face real time pressure and need to rapidly
change business models; we, as technology providers,
need to create technology to facilitate that for them. Just as
broadcasters will have to rapidly conceptualize and deliver
new services, vendors have to increase innovation velocity,
delivering lots of fast iterations of microservices architectures,
and adapting their capabilities, so that customers, in turn, can
keep running successful agile businesses.

The internet has really shaken up the broadcast industry,
shaping the way consumers access content and throwing down
the gauntlet to traditional broadcast models. While this has
presented a challenge for the vendor community, at the same
time it’s provided the solution. In the case of Grass Valley, we
can now put our unique intellectual property and expertise in
media and live production on internet platforms. Furthermore,
we can now leverage technologies that allow us to exploit our
intellectual properties in a way that just wasn’t possible before.

We’re at an exciting crossroads, where long-held beliefs about
what a broadcast facility looks like, or how content is created
and delivered, are being shed. Our customers need partners
that can understand the shifting dynamic and deliver solutions
– regardless of technology – that answers their needs and can
help them adapt and scale at speed.

www.grassvalley.com

Neil Maycock, Senior Vice President – Strategic Marketing & Playout, Grass
Valley.

WP

CSFor hundreds more high quality original articles and
Essential Guides like this please visit:

thebroadcastbridge.com

01/2020

MEDIA CASE STUDIES

WHITE PAPERS

© The Broadcast Bridge 2020

EG
ESSENTIAL GUIDES

Supported by

http://thebroadcastbridge.com

